Product Description
Features
1. Available in sizes in Module1.5/2/3/4/5/6/7/8/9/10
2. Repeatability of up to ± 0.01mm
3. Powerful rack and pinion drives for reliable movements.
4. Extremely compact frame with high inherent stiffness
5. It is designed for high-temperature resistance, long service life.
6. Rigidness improved, Smaller size, Easy to maintain, Improve accuracy, Easy assemble, etc.
Operation
1. The operation conditions need to be within the rated values as shown in the technical information.
2. Avoid dust, debris, and any foreign objects from entering the rack and pinion return system.
3. The operational temperature should be under 80 ºC. In high-temperature environments above 80ºC.
4. If the product can be used in a special environment, such as vacuum, vibration,
clean room, corrosive chemicals, organic solvents, extremely high or low temperatures, humidity, liquid splashes,
oil drops or mist, high salt, heavy load, vertical or cantilever installations. Please Confirm first with TOCO.
5. For vertical installations, when loaded, there is a possibility that the slider may fall. We recommend adding
proper braking and ensure functionality before the operation.
Maintenance
1. Lubricate the product before the initial use. Note the type of grease used and avoid mixing different types together.
2. For normal operating conditions, it is recommended to check the operation every 100km, clean and supply grease CHINAMFG the rack and pinion.
Brand | TOCO |
Model | Rack and pinion |
Size customize | Module1.5/2/3/4/5/6/7/8/9/10 |
HS-CODE | 8483900090 |
Items packing | Plastic bag+Cartons Or Wooden Packing |
Payment terms | T/T, Western Union |
Production lead time | 15 business days for sample, 35 days for the bulk |
Keyword | Rack and pinion |
Application | 1. Automatic controlling machine 2. Semi-conductor industry 3. General industry machinery 4. Medical equipment 5. Solar energy equipment 6. Machine tool 7. Parking system 8. High-speed rail and aviation transportation equipment, etc. |
Catalogs
Package & Shipping
1.Package: Carton or wooden case.
2.Delivery time: 15 days after receiving payment.
3.Shipping: by express (DHL, TNT, FedEx, etc.) or by sea.
TOCO Exhibition
ZheJiang brand registered trademark, High-Tech Enterprise, letter patents, and ISO.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Machinery, Laser Cutting Machines |
---|---|
Hardness: | Hardened Tooth Surface |
Gear Position: | External Gear |
Manufacturing Method: | Ground or Milled |
Toothed Portion Shape: | Straight or Helical |
Material: | S45c or Scm440 |
Samples: |
US$ 100/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What safety considerations should be kept in mind when working with rack and pinion?
When working with rack and pinion systems, several safety considerations should be kept in mind to ensure the well-being of personnel and the proper functioning of the equipment. Here’s a detailed explanation of the safety considerations:
- Guarding: It is essential to install appropriate guarding around the rack and pinion system to prevent accidental contact with moving parts. Guards should be designed to restrict access to the gears, especially the pinion gear, to avoid the risk of entanglement or injury. Guards can be physical barriers, safety enclosures, or interlocked covers that prevent access to the moving components while allowing necessary maintenance and inspection activities.
- Emergency Stop: Incorporating an emergency stop system is crucial for safety. An easily accessible emergency stop button or switch should be installed to quickly halt the motion of the rack and pinion system in case of an emergency or when there is an imminent risk of injury. The emergency stop system should be clearly labeled, easily identifiable, and functionally tested to ensure its reliability.
- Lockout/Tagout Procedures: When performing maintenance, repair, or adjustment tasks on the rack and pinion system, proper lockout/tagout procedures should be followed. This involves isolating the system from its power source, locking and tagging the energy isolation devices, and ensuring that authorized personnel are aware of the ongoing work. Lockout/tagout procedures help prevent accidental start-up or energization of the system, safeguarding against potential injuries.
- Proper Training: Operators and maintenance personnel should receive adequate training on the safe operation, maintenance, and handling of rack and pinion systems. They should be familiar with the potential hazards associated with the equipment and understand the safety protocols and procedures to follow. Training should cover topics such as proper use of personal protective equipment (PPE), safe working distances, emergency response, and the recognition of abnormal operating conditions.
- Regular Inspections and Maintenance: Routine inspections and maintenance should be conducted to identify any potential safety hazards or signs of wear and tear. This includes inspecting the rack and pinion gears, checking for loose or damaged components, and ensuring proper lubrication. Any identified issues should be addressed promptly to maintain the safe operation of the system.
- Load Capacity and Overload: It is crucial to operate the rack and pinion system within its specified load capacity limits. Exceeding the load capacity can lead to gear failure or other mechanical issues, posing a safety risk. Care should be taken to properly assess and understand the weight and forces involved in the application and ensure that the rack and pinion system is appropriately sized and rated for the intended load.
- Environmental Factors: Consideration should be given to environmental factors that can affect the safe operation of the rack and pinion system. For example, moisture, dust, extreme temperatures, or corrosive substances can impact the performance and longevity of the system. Adequate environmental protection measures, such as sealing, ventilation, or specialized coatings, should be implemented as necessary to maintain safe and reliable operation.
By adhering to proper guarding, implementing emergency stop systems, following lockout/tagout procedures, providing training, conducting regular inspections, operating within load capacity limits, and considering environmental factors, the safety of working with rack and pinion systems can be effectively maintained. Prioritizing safety ensures a secure working environment and minimizes the risk of accidents or injuries.
Can rack and pinion systems be integrated into robotic and automation equipment?
Yes, rack and pinion systems can be successfully integrated into robotic and automation equipment to facilitate precise and efficient motion control. Here’s a detailed explanation of how rack and pinion systems can be utilized in robotic and automation applications:
Rack and pinion systems offer several advantages that make them well-suited for integration into robotic and automation equipment:
- Precision and Accuracy: Rack and pinion systems provide high precision and accuracy in motion control. The direct engagement between the pinion and the rack ensures a positive and backlash-free transfer of motion, allowing for precise positioning and repeatability. This characteristic is essential in robotic and automation applications that require accurate movement and positioning of components.
- High Speed and Acceleration: Rack and pinion systems are capable of operating at high speeds and accommodating rapid accelerations. The direct power transmission and efficient torque transfer of rack and pinion mechanisms enable quick and dynamic movements, making them suitable for applications that demand fast and agile robotic motions.
- Compact Design: Rack and pinion systems offer a compact design, which is advantageous in space-constrained robotic and automation setups. The linear nature of the rack allows for efficient integration into robotic arms, linear stages, and other motion control systems. This compact design maximizes the workspace utilization and allows for flexible placement of the rack and pinion mechanism.
- High Load Capacity: Rack and pinion systems can handle substantial loads while maintaining efficient power transmission. The engagement of the teeth provides a large contact area, allowing for the effective distribution of forces and torque. This characteristic is essential for robotic and automation equipment that needs to manipulate heavy payloads or exert significant forces.
- Versatility: Rack and pinion systems offer versatility in terms of design options and configuration possibilities. They can be implemented in various orientations, such as horizontal, vertical, or inclined setups, to accommodate different robotic and automation requirements. Additionally, rack and pinion systems can be combined with other mechanisms, such as gears and belts, to achieve complex motion profiles and multi-axis control.
- Reliability and Durability: Rack and pinion systems are known for their durability and long service life. When properly designed and maintained, they can withstand high loads, repetitive movements, and demanding operating conditions. This reliability is crucial in robotic and automation equipment, where continuous and uninterrupted operation is essential.
Overall, the integration of rack and pinion systems in robotic and automation equipment offers precise motion control, high-speed capability, compactness, load-handling capabilities, versatility, and reliability. These characteristics make rack and pinion systems a popular choice in applications such as pick-and-place robots, CNC machines, packaging equipment, material handling systems, and assembly lines.
What advantages do rack and pinion systems offer for precise motion control?
Rack and pinion systems offer several advantages for precise motion control. Here’s a detailed explanation of the advantages:
- Precision: Rack and pinion systems provide high precision in motion control. The teeth on the rack and pinion gears mesh closely, resulting in minimal backlash or play. This close engagement allows for accurate and repeatable linear motion, making rack and pinion systems suitable for applications that require precise positioning and movement control.
- Direct Mechanical Linkage: Rack and pinion systems offer a direct mechanical linkage between the rotating pinion gear and the linearly moving rack. This direct linkage ensures a one-to-one correspondence between the rotational motion of the pinion gear and the linear motion of the rack. The absence of intermediate linkages or mechanisms reduces the chances of mechanical play or lost motion, contributing to the overall precision of the system.
- Low Backlash: Backlash refers to the amount of clearance or play between mating teeth in a gear system. Rack and pinion systems can be designed to have low backlash, which is crucial for precise motion control. The minimal backlash in rack and pinion systems allows for accurate and immediate response to changes in input, ensuring precise positioning and minimizing errors in motion control applications.
- High Repeatability: Rack and pinion systems offer high repeatability in motion control. Once the gear teeth are engaged, the linear motion of the rack follows the rotational motion of the pinion gear consistently. This repeatability allows for precise and consistent positioning of the rack, making rack and pinion systems suitable for tasks that require repeated and accurate movements.
- Efficient Power Transmission: Rack and pinion systems provide efficient power transmission from the rotating pinion gear to the linearly moving rack. The direct mechanical linkage and the close meshing of teeth minimize energy losses, ensuring that a significant portion of the input power is efficiently converted into linear motion. This efficiency is beneficial in applications where energy conservation is important.
- Fast Response: Rack and pinion systems offer fast response in motion control. The teeth on the rack and pinion gears allow for rapid acceleration and deceleration, enabling quick and responsive movements. This fast response time is valuable in applications that require dynamic motion control or rapid changes in position.
- Compact Design: Rack and pinion systems have a compact design, which is advantageous in applications with limited space. The linear nature of the rack allows for efficient packaging, making rack and pinion systems suitable for compact machinery and equipment.
Overall, rack and pinion systems provide high precision, low backlash, efficient power transmission, and fast response, making them well-suited for applications that require precise motion control. These advantages make rack and pinion systems popular in industries such as automotive, robotics, machinery, automation, and more.
editor by Dream 2024-05-14