China factory Power Steering Rack Pinion for Chrysler 300 Jeep CZPT RAM Truck Sprinter with Hot selling

Product Description

 

 

 

Product Description: 

Commodity Power Steering Rack Pinion For Chrysler 300 JEEP CHINAMFG RAM TRUCK SPRINTER
OEM number 4584568AF
Material Metal 
Colour Shown/Customized
Place of origin China Mainland
Service OEM & ODM
MOQ 100 PCS
Supply Ability 100000/Month
Payment Term T/T, L/C
Delivery Time 25-35 Days After Order Is Confirmed
Trading Term FOB, CIF, CFR, EXW etc
Packing  1.Plastic bag+Carton;
2.Pallet;
3.Be Customized.

 

Product Display

Company Information:
                             

                  HangZhou CHINAMFG Auto Parts CO.,LTD
We produce and supply Suspension & Steering Parts and Engine Mount fits for Tesla BMW Mercedes-Benz VAG Renault Peugeot CHINAMFG CHINAMFG Honda Mazda Fiat Opel GM CHINAMFG Chevrolet Land Rover CHINAMFG CHINAMFG Dodge Chrysler CHINAMFG CHINAMFG Porsche CHINAMFG Suzuki CHINAMFG BYD Geely MG Greatwall…(Control Arm, Ball Joint, Steering Tie Rod, Stabilizer Bar Link, Engine Mounting, Strut Mount, Steering Knuckle…). We keep stock of CHINAMFG parts for Tesla and luxury cars such as BMW Benz Porsche Lexus…

 

Location/Convenient transportation
#2 hours 10 minutes from ZheJiang by train;
#42 minutes from HangZhou by train;
#3 hours from HangZhou by train.

Our Advantages

# Advantage: We have our own production base with competitive cost.
# Successful cases: China Suppliers Manufacturer of Germany Car Brand Volkswagen Audi Skoda Seat Benz Bmw Replace Parts.
# Agent as China Purchase Office of auto parts importer. 

 

Packaging & Shipping

 

Workshop Details

Shipment & Payment

FAQ

Q1:How about your delivery time? 
A: Generally it will take 2-7 days if the goods are in stock.or it is 15-30 days if the goods are not in stock, it is according to quantity. 

Q2: What is your terms of payment? 
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance. 

Q3: Can you produce according to the samples? 
A: Yes, we can produce by your samples or technical drawings. 

Q4: Any guarantee of your products? 
A: We have 1 year quality guarantee. 

Q5: Where is your company located? 
A: Our company is located in HangZhou City, ZheJiang Province. 2 hours 10 minutes from ZheJiang by train; 42 minutes from HangZhou by train; 3 hours from HangZhou by train. 

Q6: What is your MOQ for parts? 
A: It depends on the products. if the items we have stock, there is no limitation for MOQ.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Type: Steering Gears/Shaft
Condition: New
Size: Standard Size
Color: Customized Color
Customization:
Available

|

Customized Request

plastic gear rack

How does the design of the rack and pinion affect its performance?

The design of the rack and pinion plays a significant role in determining its performance characteristics. Here’s a detailed explanation of how the design factors of a rack and pinion system can affect its performance:

  • Tooth Profile: The tooth profile of the rack and pinion gears can impact the performance of the system. Different tooth profiles, such as straight, helical, or custom-designed profiles, have varying effects on factors such as load distribution, noise generation, efficiency, and backlash. The selection of the tooth profile should be based on the specific application requirements and considerations.
  • Module and Pitch: The module (or diametral pitch) and pitch of the rack and pinion gears are crucial design parameters that affect performance. The module determines the size and spacing of the teeth, while the pitch represents the distance between corresponding points on adjacent teeth. The module and pitch selection influence factors such as torque capacity, smoothness of motion, precision, and load distribution. Optimal module and pitch values should be chosen based on the load, speed, and accuracy requirements of the application.
  • Material Selection: The choice of materials for the rack and pinion components directly impacts their performance and durability. Factors such as strength, wear resistance, corrosion resistance, and friction characteristics should be considered when selecting materials. Common materials used for rack and pinion systems include steel, stainless steel, aluminum, and various alloys. The material selection should align with the application requirements to ensure reliable and efficient performance.
  • Backlash: Backlash refers to the clearance or play between the teeth of the rack and pinion gears. It can affect the accuracy, precision, and responsiveness of the system. Minimizing backlash is crucial in applications that require precise positioning and motion control. The design of the rack and pinion system should incorporate measures to reduce or compensate for backlash, such as proper tooth profile selection, preloading mechanisms, or backlash compensation techniques.
  • Geometry and Tolerance: The geometric design and tolerance levels of the rack and pinion system impact its performance. Factors such as tooth geometry, surface finish, dimensional accuracy, and concentricity influence the efficiency, smoothness of operation, noise generation, and overall quality of motion. High precision and tight tolerances are often desirable for applications that require precise positioning and smooth motion control.
  • Lubrication: Proper lubrication is essential for the smooth operation and longevity of rack and pinion systems. Lubricants reduce friction and wear between the gears, ensuring efficient power transmission and minimizing the risk of damage. The design of the rack and pinion system should incorporate adequate lubrication mechanisms, such as lubricant reservoirs, oil passages, or grease fittings, to facilitate proper lubrication and ensure optimal performance.
  • Stiffness and Rigidity: The stiffness and rigidity of the rack and pinion components influence their ability to withstand loads and minimize deflection. A well-designed rack and pinion system should exhibit sufficient stiffness and rigidity to maintain accuracy and prevent excessive deformation or backlash under load. Factors such as the material selection, geometry, and cross-sectional design of the rack and pinion components contribute to their stiffness and rigidity.

By considering factors such as tooth profile, module and pitch, material selection, backlash, geometry and tolerance, lubrication, and stiffness, the design of a rack and pinion system can be optimized to achieve the desired performance characteristics. A well-designed system ensures efficient power transmission, high accuracy, smooth motion control, durability, and reliable operation in various applications.

\plastic gear rack

How do rack and pinion systems contribute to efficient power transmission?

Rack and pinion systems play a significant role in facilitating efficient power transmission in various mechanical applications. Here’s a detailed explanation of how rack and pinion systems contribute to efficient power transmission:

Rack and pinion systems offer several advantages that contribute to efficient power transmission:

  • Direct Power Transfer: Rack and pinion systems provide a direct and efficient means of power transmission. The teeth of the pinion gear mesh with the teeth of the rack, creating a positive engagement. This direct contact allows for minimal power loss during transmission, as there are no intermediate mechanisms or components to introduce friction or slip.
  • High Mechanical Efficiency: Rack and pinion systems are designed to have high mechanical efficiency, meaning they maximize the output power compared to the input power. The teeth of the pinion and the rack are carefully designed and machined to minimize friction and ensure smooth motion. This efficient transfer of power reduces energy waste and enhances overall system performance.
  • Low Backlash: Backlash refers to the play or clearance between the teeth of the pinion and the rack. Rack and pinion systems can be designed with minimal backlash, which contributes to efficient power transmission. Low backlash ensures precise and immediate response to input motion, minimizing energy losses associated with tooth clearance and backlash compensation.
  • Efficient Torque Transmission: Rack and pinion systems are capable of transmitting high torque efficiently. The engagement of the pinion teeth with the rack teeth distributes the applied torque evenly along the contact area, resulting in efficient torque transmission without slippage or power dissipation. This characteristic makes rack and pinion systems suitable for applications that require high torque output.
  • Compact Design: Rack and pinion systems offer a compact design compared to other power transmission mechanisms. The linear nature of the rack allows for a more straightforward integration into space-limited applications. This compact design minimizes energy losses due to unnecessary mechanical components or complex transmission paths, resulting in more efficient power transmission.
  • High-Speed Capability: Rack and pinion systems are capable of efficient power transmission at high speeds. The direct contact between the teeth of the pinion and the rack enables rapid and precise motion transfer without significant energy losses. This characteristic is advantageous in applications that require quick and accurate movements.

By combining features such as direct power transfer, high mechanical efficiency, low backlash, efficient torque transmission, compact design, and high-speed capability, rack and pinion systems contribute to efficient power transmission in a wide range of applications. These systems are commonly used in industries such as automotive, robotics, machinery, and aerospace, where efficient power transfer is crucial for optimal performance and energy savings.

plastic gear rack

What advantages do rack and pinion systems offer for precise motion control?

Rack and pinion systems offer several advantages for precise motion control. Here’s a detailed explanation of the advantages:

  • Precision: Rack and pinion systems provide high precision in motion control. The teeth on the rack and pinion gears mesh closely, resulting in minimal backlash or play. This close engagement allows for accurate and repeatable linear motion, making rack and pinion systems suitable for applications that require precise positioning and movement control.
  • Direct Mechanical Linkage: Rack and pinion systems offer a direct mechanical linkage between the rotating pinion gear and the linearly moving rack. This direct linkage ensures a one-to-one correspondence between the rotational motion of the pinion gear and the linear motion of the rack. The absence of intermediate linkages or mechanisms reduces the chances of mechanical play or lost motion, contributing to the overall precision of the system.
  • Low Backlash: Backlash refers to the amount of clearance or play between mating teeth in a gear system. Rack and pinion systems can be designed to have low backlash, which is crucial for precise motion control. The minimal backlash in rack and pinion systems allows for accurate and immediate response to changes in input, ensuring precise positioning and minimizing errors in motion control applications.
  • High Repeatability: Rack and pinion systems offer high repeatability in motion control. Once the gear teeth are engaged, the linear motion of the rack follows the rotational motion of the pinion gear consistently. This repeatability allows for precise and consistent positioning of the rack, making rack and pinion systems suitable for tasks that require repeated and accurate movements.
  • Efficient Power Transmission: Rack and pinion systems provide efficient power transmission from the rotating pinion gear to the linearly moving rack. The direct mechanical linkage and the close meshing of teeth minimize energy losses, ensuring that a significant portion of the input power is efficiently converted into linear motion. This efficiency is beneficial in applications where energy conservation is important.
  • Fast Response: Rack and pinion systems offer fast response in motion control. The teeth on the rack and pinion gears allow for rapid acceleration and deceleration, enabling quick and responsive movements. This fast response time is valuable in applications that require dynamic motion control or rapid changes in position.
  • Compact Design: Rack and pinion systems have a compact design, which is advantageous in applications with limited space. The linear nature of the rack allows for efficient packaging, making rack and pinion systems suitable for compact machinery and equipment.

Overall, rack and pinion systems provide high precision, low backlash, efficient power transmission, and fast response, making them well-suited for applications that require precise motion control. These advantages make rack and pinion systems popular in industries such as automotive, robotics, machinery, automation, and more.

China factory Power Steering Rack Pinion for Chrysler 300 Jeep CZPT RAM Truck Sprinter with Hot sellingChina factory Power Steering Rack Pinion for Chrysler 300 Jeep CZPT RAM Truck Sprinter with Hot selling
editor by Dream 2024-05-02